CORO1A regulates lipoprotein uptake in Leydig cells exposed to cadmium

Ecotoxicol Environ Saf. 2022 Mar 1:232:113255. doi: 10.1016/j.ecoenv.2022.113255. Epub 2022 Feb 1.

Abstract

Cadmium (Cd) is one of the most common environmental pollutants, which has a long biological half-life. Maternal Cd-exposure in the natural environment causes steroidogenesis defects resulting in spermatogenesis disorder in male offspring. For better understanding its underlying mechanism, we have employed iTRAQ to screen the differentially expressed protein and found that the expression of CORO1A and Cofilin 1 was up-regulated approximately 2 fold in Leydig cells of maternal Cd-exposure offspring. As the major source of steroid hormone, cholesterol is transported to cells via receptor-mediated endocytosis which relies on the remodel of cytoskeleton, then stores in lipid droplets (LDs). However, few studies have focused on the role of cytoskeleton in abnormal steroidogenesis. This study was performed to explore the role of CORO1A in androgen deficiency caused by Cd exposure and its involvement of low-density lipoprotein (LDL) uptake and effects on LDs. We found that Cd resulted in the up-regulation of CORO1A and Cofilin 1, and down-regulation of Profilin 1 in the testis of male offspring with maternal exposure. The structure of filamentous actin was broken, disordered and even crumpled up in Cd-treated R2C cells. F-actin disassembly led to a low uptake of LDL with a reduced number of LDs, followed by decreased total cholesterol and low progesterone production. When CORO1A was silenced, the expression of Cofilin 1 was down-regulated and Profilin 1 was up-regulated in Cd-treated R2C cells. The filamentous actin was rescued and the integrated cytoskeleton prompted LDL uptake, which resulted in the increased total cholesterol and high progesterone production. These findings highlight the crucial role of CORO1A as a cytoskeleton regulatory protein in steroidogenesis, which may help to better understand Cd-induced steroid hormone deficiency in children.

Keywords: CORO1A; Cadmium; Cytoskeleton; Leydig cell; Lipid droplet.

MeSH terms

  • Biological Transport
  • Cadmium* / toxicity
  • Female
  • Humans
  • Leydig Cells*
  • Lipoproteins
  • Male
  • Maternal Exposure

Substances

  • Lipoproteins
  • Cadmium