Predicting response to radiotherapy in tumors with PET/CT: when and how?

Transl Cancer Res. 2020 Apr;9(4):2972-2981. doi: 10.21037/tcr.2020.03.16.

Abstract

Radiotherapy is one of the main methods for tumor treatment, with the improved radiotherapy delivery technique to combat cancer, there is a growing interest for finding effective and feasible ways to predict tumor radiosensitivity. Based on a series of changes in metabolism, microvessel density, hypoxic microenvironment, and cytokines of tumors after radiotherapy, a variety of radiosensitivity detection methods have been studied. Among the detection methods, positron emission tomography-computed tomography (PET/CT) is a feasible tool for response evaluation following definitive radiotherapy for cancers with a high negative predictive value. The prognostic or predictive value of PET/CT is currently being studied widely. However, there are many unresolved issues, such as the optimal probe of PET/CT for radiosensitivity prediction, the selection of the most useful PET/CT parameters and their optimal cut-offs such as total lesion glycolysis (TLG), metabolic tumor volume (MTV) and standardized uptake value (SUV), and the optimal timing of PET/CT pre-treatment, during or following RT. Different radiosensitivity of tumors, modes of radiotherapy action and fraction scheduling may complicate the appropriate choice. In this study, we will discuss the diverse methods for evaluating radiosensitivity, and will also focus on the selection of the optimal probe, timing, cut-offs and parameters of PET/CT for evaluating the radiotherapy response.

Keywords: PET/CT parameters; Radiosensitivity; optimal cut-offs; positron emission tomography-computed tomography (PET/CT); textural features.

Publication types

  • Review