Designing New Indene-Fullerene Derivatives as Electron-Transporting Materials for Flexible Perovskite Solar Cells

J Phys Chem C Nanomater Interfaces. 2021 Dec 16;125(49):27344-27353. doi: 10.1021/acs.jpcc.1c07189. Epub 2021 Dec 3.

Abstract

The synthesis and characterization of a family of indene-C60 adducts obtained via Diels-Alder cycloaddition [4 + 2] are reported. The new C60 derivatives include indenes with a variety of functional groups. These adducts show lowest unoccupied molecular orbital energy levels to be at the right position to consider these compounds as electron-transporting materials for planar heterojunction perovskite solar cells. Selected derivatives were applied into inverted (p-i-n configuration) perovskite device architectures, fabricated on flexible polymer substrates, with large active areas (1 cm2). The highest power conversion efficiency, reaching 13.61%, was obtained for the 6'-acetamido-1',4'-dihydro-naphtho[2',3':1,2][5,6]fullerene-C60 (NHAc-ICMA). Spectroscopic characterization was applied to visualize possible passivation effects of the perovskite's surface induced by these adducts.