Exploring multifunctional behaviour of g-C3N4 decorated BiVO4/Ag2CO3 hierarchical nanocomposite for simultaneous electrochemical detection of two nitroaromatic compounds and water splitting applications

Talanta. 2022 May 1:241:123257. doi: 10.1016/j.talanta.2022.123257. Epub 2022 Jan 22.

Abstract

Development of multifunctional ternary nanocomposite based electrocatalysts for detection of toxic elements and generation of renewable energy describes an environmentally sustainable technique to address the dual challenges of pollution and energy. Herein, we adopted microwave-assisted synthesis to design a multifunctional graphitic carbon nitride (g-C3N4) decorated BiVO4/Ag2CO3 (BVG@C) hierarchical ternary nanocomposite for sensing and water splitting applications. The morphological, structural and elemental characterizations demonstrate the successful decoration of carbon nitride on the composite surface. The electrochemical activity of BVG@C modified glassy carbon electrode reveals excellent redox behaviour towards simultaneous detection of 4-Nitrophenol (4-NP) and 4-Nitroaniline (PNA). The modified electrode shows rapid amperometric current response with high sensitivity of 2.368 μA mM cm-2 and 1.534 mA mM cm-2 and low detection limit of 0.012 μmol L-1and 0.028 μmol L-1, respectively for 4-NP and PNA. Moreover, the modified electrode was further investigated for hydrogen evolution and oxygen evolution reactions and the electrocatalytic results show admirable activity and good stability for oxygen evolution with very low overpotential of 136 mV in alkaline medium. It is worthwhile to mention that the excellent activity of electrocatalyst can be ascribed to the decoration and electronic interaction of g-C3N4 with the BiVO4/Ag2CO3 nanocomposite, increasing its surface area, active sites, charge transfer and decreasing resistance.

Keywords: 4-NP; Electrochemical sensor; HER; Multifunctional nanocomposite; OER; PNA.

MeSH terms

  • Carbon
  • Electrochemical Techniques / methods
  • Electrodes
  • Nanocomposites* / chemistry
  • Water*

Substances

  • Water
  • Carbon