Comparative sequencing and SNP marker validation for oat stem rust resistance gene Pg6 in a diverse collection of Avena accessions

Theor Appl Genet. 2022 Apr;135(4):1307-1318. doi: 10.1007/s00122-022-04032-z. Epub 2022 Feb 3.

Abstract

Comparative sequence analysis was used to design a SNP marker that aided in the identification of new sources of oat stem rust resistance. New races of Puccinia graminis f. sp. avenae (Pga) threaten global oat production. An A. strigosa accession known to carry the broadly effective oat stem rust resistance gene, Pg6, was crossed with two susceptible A. strigosa accessions to generate 198 F2:3 families and 190 F5:6 RILs. The RIL population was used to determine that Pg6 was a single dominant gene located between 475 and 491 Mbp on diploid chromosome AA2 of the A. atlantica genome. This region was further refined by identifying SNPs associated with Pg6 resistance in a panel of previously sequenced A-genome accessions. Twenty-four markers were developed from SNPs that showed perfect association between the Pg6 phenotype and 11 sequenced Avena diploid accessions. These markers were validated in the RILs and F2:3 families, and the markers most closely linked with resistance were tested in a diverse panel of 253 accessions consisting of oat stem rust differentials, all available diploid Avena spp. accessions, and 41 A. vaviloviana accessions from the National Small Grains Collection. One SNP marker located at 483, 439, 497 bp on AA2, designated as AA2_483439497, was perfectly associated with the Pg6 phenotype in Avena strigosa diploids and was within several Kb of a resistance gene analog, RPP13. The marker results and seedling testing against Pga races DBD, KBD, TJS, and TQL enabled the postulation of Pg6 and potential new sources of resistance in the Avena panel. These results will be used to infer Pg6 presence in other germplasm collections and breeding programs and can assist with introgression, gene pyramiding, and cloning of Pg6.

MeSH terms

  • Avena* / genetics
  • Basidiomycota*
  • Disease Resistance / genetics
  • Plant Breeding
  • Plant Diseases / genetics
  • Polymorphism, Single Nucleotide
  • Puccinia
  • Sequence Analysis

Supplementary concepts

  • Puccinia graminis