Singlet Triplet-Pair Production and Possible Singlet-Fission in Carotenoids

J Phys Chem Lett. 2022 Feb 10;13(5):1344-1349. doi: 10.1021/acs.jpclett.1c03812. Epub 2022 Feb 2.

Abstract

Internal conversion from the photoexcited state to a correlated singlet triplet-pair state is believed to be the precursor of singlet fission in carotenoids. We present numerical simulations of this process using a π-electron model that fully accounts for electron-electron interactions and electron-nuclear coupling. The time-evolution of the electrons is determined rigorously using the time-dependent density matrix renormalization group method, while the nuclei are evolved via the Ehrenfest equations of motion. We apply this to zeaxanthin, a carotenoid chain with 18 fully conjugated carbon atoms. We show that the internal conversion of the primary photoexcited state, S2, to the singlet triplet-pair state occurs adiabatically via an avoided crossing within ∼50 fs with a yield of ∼60%. We further discuss whether this singlet triplet-pair state will undergo exothermic versus endothermic intra- or interchain singlet fission.