Longitudinal intravital imaging of cerebral microinfarction reveals a dynamic astrocyte reaction leading to glial scar formation

Glia. 2022 May;70(5):975-988. doi: 10.1002/glia.24151. Epub 2022 Feb 2.

Abstract

Cerebral microinfarct increases the risk of dementia. But how microscopic cerebrovascular disruption affects the brain tissue in cellular-level are mostly unknown. Herein, with a longitudinal intravital imaging, we serially visualized in vivo dynamic cellular-level changes in astrocyte, pericyte and neuron as well as microvascular integrity after the induction of cerebral microinfarction for 1 month in mice. At day 2-3, it revealed a localized edema with acute astrocyte loss, neuronal death, impaired pericyte-vessel coverage and extravascular leakage of 3 kDa dextran (but not 2 MDa dextran) indicating microinfarction-related blood-brain barrier (BBB) dysfunction for small molecules. At day 5, the local edema disappeared with the partial restoration of microcirculation and recovery of pericyte-vessel coverage and BBB integrity. But brain tissue continued to shrink with persisted loss of astrocyte and neuron in microinfarct until 30 days, resulting in a collagen-rich fibrous scar surrounding the microinfarct. Notably, reactive astrocytes expressing glial fibrillary acidic protein (GFAP) appeared at the peri-infarct area early at day 2 and thereafter accumulated in the peri-infarct until 30 days, inducing glial scar formation in cerebral cortex. Our longitudinal intravital imaging of serial microscopic neurovascular pathophysiology in cerebral microinfarction newly revealed that astrocytes are critically susceptible to the acute microinfarction and their reactive response leads to the fibrous glial scar formation.

Keywords: blood-brain barrier; cerebral microinfarct; glial scar formation; intravital imaging; reactive astrocyte.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Astrocytes* / metabolism
  • Dextrans / metabolism
  • Glial Fibrillary Acidic Protein / metabolism
  • Gliosis* / diagnostic imaging
  • Gliosis* / etiology
  • Gliosis* / metabolism
  • Infarction / metabolism
  • Intravital Microscopy
  • Mice

Substances

  • Dextrans
  • Glial Fibrillary Acidic Protein