Exosomes derived from γδ-T cells synergize with radiotherapy and preserve antitumor activities against nasopharyngeal carcinoma in immunosuppressive microenvironment

J Immunother Cancer. 2022 Feb;10(2):e003832. doi: 10.1136/jitc-2021-003832.

Abstract

Background: Radiotherapy is the first-line treatment for patients nasopharyngeal carcinoma (NPC), but its therapeutic efficacy is poor in some patients due to radioresistance. Adoptive T cell-based immunotherapy has also shown promise to control NPC; however, its antitumor efficacy may be attenuated by an immunosuppressive tumor microenvironment. Exosomes derived from γδ-T cells (γδ-T-Exos) have potent antitumor potentials. However, it remains unknown whether γδ-T-Exos have synergistic effect with radiotherapy and preserve their antitumor activities against NPC in an immunosuppressive tumor microenvironment.

Methods: γδ-T-Exos were stained with fluorescent membrane dye, and their interactions with NPC were determined both in vitro and in vivo. NPC cell deaths were detected after treatment with γδ-T-Exos and/or irradiation. Moreover, effects of γδ-T-Exos on radioresistant cancer stem-like cells (CSCs) were determined. The therapeutic efficacy of combination therapy using γδ-T-Exos and irradiation on NPC tumor progression was also monitored in vivo. Finally, the tumor-killing and T cell-promoting activities of γδ-T-Exos were determined under the culture in immunosuppressive NPC supernatant.

Results: γδ-T-Exos effectively interacted with NPC tumor cells in vitro and in vivo. γδ-T-Exos not only killed NPC cells in vitro, which was mainly mediated by Fas/Fas ligand (FasL) and death receptor 5 (DR5)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathways, but also controlled NPC tumor growth and prolonged tumor-bearing mice survival in vivo. Furthermore, γδ-T-Exos selectively targeted the radioresistant CD44+/high CSCs and induced profound cell apoptosis. The combination of γδ-T-Exos with radiotherapy overcame the radioresistance of CD44+/high NPC cells and significantly improved its therapeutic efficacy against NPC in vitro and in vivo. In addition, γδ-T-Exos promoted T-cell migration into NPC tumors by upregulating CCR5 on T cells that were chemoattracted by CCR5 ligands in the NPC tumor microenvironment. Although NPC tumor cells secreted abundant tumor growth factor beta to suppress T-cell responses, γδ-T-Exos preserved their direct antitumor activities and overcame the immunosuppressive NPC microenvironment to amplify T-cell antitumor immunity.

Conclusions: γδ-T-Exos synergized with radiotherapy to control NPC by overcoming the radioresistance of NPC CSCs. Moreover, γδ-T-Exos preserved their tumor-killing and T cell-promoting activities in the immunosuppressive NPC microenvironment. This study provides a proof of concept for a novel and potent strategy by combining γδ-T-Exos with radiotherapy in the control of NPC.

Keywords: head and neck neoplasms; immunotherapy; radiotherapy; t-lymphocytes; tumor microenvironment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Exosomes / metabolism*
  • Humans
  • Immunotherapy / methods*
  • Mice
  • Nasopharyngeal Neoplasms / genetics
  • Nasopharyngeal Neoplasms / mortality
  • Nasopharyngeal Neoplasms / radiotherapy*
  • Neoplastic Stem Cells / metabolism*
  • Survival Analysis
  • Tumor Microenvironment