A Comparison of Topologically Associating Domain Callers Based on Hi-C Data

IEEE/ACM Trans Comput Biol Bioinform. 2023 Jan-Feb;20(1):15-29. doi: 10.1109/TCBB.2022.3147805. Epub 2023 Feb 3.

Abstract

Topologically associating domains (TADs) are local chromatin interaction domains, which have been shown to play an important role in gene expression regulation. TADs were originally discovered in the investigation of 3D genome organization based on High-throughput Chromosome Conformation Capture (Hi-C) data. Continuous considerable efforts have been dedicated to developing methods for detecting TADs from Hi-C data. Different computational methods for TADs identification vary in their assumptions and criteria in calling TADs. As a consequence, the TADs called by these methods differ in their similarities and biological features they are enriched in. In this work, we performed a systematic comparison of twenty-six TAD callers. We first compared the TADs and gaps between adjacent TADs across different methods, resolutions, and sequencing depths. We then assessed the quality of TADs and TAD boundaries according to three criteria: the decay of contact frequencies over the genomic distance, enrichment and depletion of regulatory elements around TAD boundaries, and reproducibility of TADs and TAD boundaries in replicate samples. Last, due to the lack of a gold standard of TADs, we also evaluated the performance of the methods on synthetic datasets. We discussed the key principles of TAD callers, and pinpointed current situation in the detection of TADs. We provide a concise, comprehensive, and systematic framework for evaluating the performance of TAD callers, and expect our work will provide useful guidance in choosing suitable approaches for the detection and evaluation of TADs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromatin* / genetics
  • Chromosomes* / genetics
  • Gene Expression Regulation
  • Genome
  • Reproducibility of Results

Substances

  • Chromatin