Reversible Three-Color Fluorescence Switching of an Organic Molecule in the Solid State via "Pump-Trigger" Optical Manipulation

Angew Chem Int Ed Engl. 2022 May 9;61(20):e202117158. doi: 10.1002/anie.202117158. Epub 2022 Feb 15.

Abstract

In photoswitches that undergo fluorescence switching upon ultraviolet irradiation, photoluminescence and photoisomerization often occur simultaneously, leading to unstable fluorescence properties. Here, we successfully demonstrated reversible solid-state triple fluorescence switching through "Pump-Trigger" multiphoton manipulation. A novel fluorescence photoswitch, BOSA-SP, achieved green, yellow, and red fluorescence under excitation by pump light and isomerization induced by trigger light. The energy ranges of photoexcitation and photoisomerization did not overlap, enabling appropriate selection of the multiphoton light for "pump" and "trigger" photoswitching, respectively. Additionally, the large free volume of the spiropyran (SP) moiety in the solid state promoted reversible photoisomerization. Switching between "pump" and "trigger" light is useful for three-color tunable switching cell imaging, which can be exploited in programmable fluorescence switching. Furthermore, we exploited reversible dual-fluorescence switching in a single molecular system to successfully achieve two-color super-resolution imaging.

Keywords: Aggregation Regulation; Multi-Color Bioimaging; Photoswitches; Super-Resolution Imaging; Triple Fluorescence.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Microscopy, Fluorescence
  • Ultraviolet Rays*