Mocs1 (Molybdenum cofactor synthesis 1) may contribute to lifespan extension in Drosophila

MicroPubl Biol. 2022 Jan 25:2022:10.17912/micropub.biology.000517. doi: 10.17912/micropub.biology.000517. eCollection 2022.

Abstract

While evaluating the effect on lifespan of decreased ribosomal protein (Rp) expression in Drosophila, we discovered a potential function in the same process for the Molybdenum cofactor synthesis 1 (Mocs1) gene. We utilized the UAS-GAL4 inducible system, by crossing tissue-specific GAL4 drivers to the Harvard Drosophila Transgenic RNAi Project (TrIP) responder lines for Rp gene knockdown. We also employed a negative control that knocked down a gene unrelated to Drosophila (GAL4). Relative to the genetic background in which no driven transgenes were present, lifespan was significantly lengthened in females, both for Rp knockdown and the negative GAL4 control. We reasoned that the Mocs1 gene, located immediately downstream of the integration site on the third chromosome where all the TrIP responders are targeted might be responsible for the lifespan effects observed, due to the potential for upregulation using the UAS-GAL4 system. We repeated the lifespan experiment using an enhancer trap in the same location as the TrIP transgenes, and found that lifespan was significantly lengthened in females that possessed both the driver and responder, relative to controls, implicating Mocs1 in the biology of aging.