New insights on metal ions accelerating the aging behavior of polystyrene microplastics: Effects of different excess reactive oxygen species

Sci Total Environ. 2022 May 15:821:153457. doi: 10.1016/j.scitotenv.2022.153457. Epub 2022 Jan 29.

Abstract

Microplastics (MPs) will coexist with various pollutants in the environment, but it is not clear whether these pollutants will affect the aging process of MPs. The aging process of polystyrene microplastics (PS-MPs) mediated by Cu2+ and Pb2+ was investigated in this study. The results showed that the aging rate of PS-MPs mediated by Cu2+ and Pb2+ were significantly higher than that of ultrapure water (After 7 days of light irradiation, the CI values of aging PS-MPs mediated by ultrapure water, Cu2+ and Pb2+ increased from 0.030 of original PS-MPs to 0.034, 0.048 and 0.086 respectively). This process may be related to the generation of a large amount of reactive oxygen species, because OH were detected in PS-MPs suspension mediated by Cu2+, which were significantly higher than those in ultrapure water, while 1O2 mediated by Pb2+ were more. However, these photo-aging effects were significantly inhibited by reactive oxygen species (ROS) quencher, which indicated that excessive ROS production was the main reason for metal ions to promote the photo-aging of PS-MPs. In addition, this study reported that excessive ROS will accelerate the formation of carbonyl group on the surface of PS-MPs, and lead to the change of physical and chemical properties of PS-MPs. This study provides new insights for the environmental behavior of MPs under the condition of combined pollution.

Keywords: Aging process; Cu(2+); Microplastics; Pb(2+).

MeSH terms

  • Microplastics* / toxicity
  • Plastics / toxicity
  • Polystyrenes / toxicity
  • Reactive Oxygen Species
  • Water
  • Water Pollutants, Chemical* / analysis
  • Water Pollutants, Chemical* / toxicity

Substances

  • Microplastics
  • Plastics
  • Polystyrenes
  • Reactive Oxygen Species
  • Water Pollutants, Chemical
  • Water