Planar ultrasonic transducer based on a metasurface piezoelectric ring array for subwavelength acoustic focusing in water

Sci Rep. 2022 Jan 27;12(1):1485. doi: 10.1038/s41598-022-05547-7.

Abstract

The development of a new ultrasonic transducer capable of improved focusing performance has become a necessity to overcome the limitations of conventional ultrasonic transducer technology. In this study, we designed and optimized a metasurface piezoelectric ring device, and using multiphysics finite element analysis, we examined the performance of a planar ultrasonic transducer consisting of this device, a matching layer, a backing layer, and housing in producing a needle-like subwavelength focusing beam in water. For practical experiments, a metasurface piezoelectric ring device was fabricated using a laser ablation process. Subsequently, using a pulse-echo test, we found that the - 6 dB bandwidth of a planar ultrasonic transducer with a center frequency of 1.0 MHz was 37.5%. In addition, the results of an ultrasonic-focusing performance test showed that the full width at half-maximum of the axial subwavelength focusing beam was 0.78λ, and the full lateral width at half-maximum of the subwavelength lateral focusing beam was 7.03λ at a distance of 10.89λ. The needle-like focused ultrasonic beam technology implemented with a piezoelectric ring array based new planar ultrasound transducer is expected to be used in high-resolution imaging devices or medical ultrasound focusing devices in the future.

Publication types

  • Research Support, Non-U.S. Gov't