Tricritical-point phase diagram in PrCu9Sn4

J Phys Condens Matter. 2022 Feb 10;34(15). doi: 10.1088/1361-648X/ac4f7c.

Abstract

Tricritical phenomenon appearing in multiple phases is a fundamental and attractive issue in condensed-matter physics. In this work, a field-modulated tricritical phenomenon is realized in single-crystal PrCu9Sn4. The magnetization under variable directions of field indicates strong magnetic anisotropy in PrCu9Sn4, which reveals ferromagnetic coupling forH//c. A paramagnetic-to-ferromagnetic magnetic transition occurs withH//catTC= 11.7 K, which is evidenced to be of a first-ordered type. The systematical study of the critical behavior gives thatβ= 0.195(8),γ= 0.911(1), andδ= 0.0592(1) forH//cconsistent with a tricritical mean-field model, which suggests a field-modulated tricritical phenomenon. A detailedH-Tphase diagram around the tricritical point (TCP) is constructed for single-crystal PrCu9Sn4forH//c, where ferromagnetic state, forced ferromagnetic phase and paramagnetic state meet at the TCP (Htr= 799 kOe,Ttr= 11.3 K). The single-crystal PrCu9Sn4supplies a platform to deep investigate the field-modulated magnetic couplings and tricritical phenomenon.

Keywords: critical exponent; field-induced phase transition; magnetic structure; phase diagram; tricritical phenomenon.