Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives

J Hazard Mater. 2022 May 5:429:128312. doi: 10.1016/j.jhazmat.2022.128312. Epub 2022 Jan 21.

Abstract

The intrinsic advancement of lithium-ion batteries (LIBs) for application in electric vehicles (EVs), portable electronic devices, and energy-storage devices has led to an increase in the number of spent LIBs. Spent LIBs contain hazardous metals (such as Li, Co, Ni, and Mn), toxic and corrosive electrolytes, metal casting, and polymer binders that pose a serious threat to the environment and human health. Additionally, spent LIBs may serve as an economic source for transition metals, which could be applied to redesigning under a closed-circuit recycling process. Thus, the development of environmentally benign, low cost, and efficient processes for recycling of LIBs for a sustainable future has attracted worldwide attention. Therefore, herein, we introduce the concept of LIBs and review state-of-art technologies for metal recycling processes. Moreover, we emphasize on LIB pretreatment approaches, metal extraction, and pyrometallurgical, hydrometallurgical, and biometallurgical approaches. Direct recycling technologies combined with the profitable and sustainable cathode healing technology have significant potential for the recycling of LIBs without decomposition into substituent elements or precipitation; hence, these technologies can be industrially adopted for EV batteries. Finally, commercial technological developments, existing challenges, and suggestions are presented for the development of effective, environmentally friendly recycling technology for the future.

Keywords: Biometallurgy; Direct recycling; Hydrometallurgy; Metal recycling; Pyrometallurgy; Waste lithium-ion batteries.