Novel mechanism and degradation kinetics of pesticides mixture using Bacillus sp. strain 3C in contaminated sites

Pestic Biochem Physiol. 2022 Feb:181:104996. doi: 10.1016/j.pestbp.2021.104996. Epub 2021 Nov 23.

Abstract

The present study has investigated the potential of Bacillus sp. strain 3C able to degrade mixture of pesticides from the environment. It showed maximum tolerance up to 450 mg·L-1 for cypermethrin, fipronil, imidacloprid and sulfosulfuron. The strain 3C was able to degrade up to the 94% of mixture of pesticides (20 mg·L-1) within 15 days of experiment. The Box-Behnken design of Response Surface Methodology (RSM) determined the optimized conditions as; inoculum size 3.0 × 107 CFU·mL-1, shaking speed 120 rpm, and pesticides concentration 80 mg·L-1. In soil-based bioremediation with strain 3C after 15 days degradation pattern was; 99, 94, 92, 92 and 7% for the imidacloprid, sulfosulfuron, fipronil, cypermethrin and control respectively. The novel intermediate metabolites for cypermethrin degradation were investigated as decyl isobutyl ester, phthalic acid, cyclopropane carboxylic acid tri dec-2-ynyl ester, 9- octadecanal, tridecane, propanoic acid, cyclohexene, bicyclo[2.2.1] heptan-2-ol, and acetic acid were identified using Gas chromatography Mass Spectrometry (GC-MS) with strain 3C. Moreover, the results of the laccase based enzymatic kinetics suggested that the rate of production was maximum in pesticides stress (94 μg·μL-1) whereas, in normal condition 51 μg·μL-1. The Km value found to be decreased in pesticides stress condition 12.25 and increment in Km 13.58 mM was observed without stress. Furthermore, aldehyde dehydrogenase (ALDH) and laccase encoding genes were amplified and linked with mixture of pesticides bioremediation. The efficiency of bacterial strain 3C, could be used for bioremediation of mixture of pesticides, and other xenobiotic compounds from the contaminated environments.

Keywords: ALDH; Bacillus sp. 3C; Biodegradation; Laccase; Metabolites; Pesticides; Xenobiotic.

MeSH terms

  • Bacillus*
  • Biodegradation, Environmental
  • Gas Chromatography-Mass Spectrometry
  • Kinetics
  • Pesticides*
  • Soil Pollutants*

Substances

  • Pesticides
  • Soil Pollutants