Functional Characterization of the GATA-Type Transcription Factor PaNsdD in the Filamentous Fungus Podospora anserina and Its Interplay with the Sterigmatocystin Pathway

Appl Environ Microbiol. 2022 Mar 22;88(6):e0237821. doi: 10.1128/aem.02378-21. Epub 2022 Jan 26.

Abstract

The model ascomycete Podospora anserina, distinguished by its strict sexual development, is a prolific but yet unexploited reservoir of natural products. The GATA-type transcription factor NsdD has been characterized by the role in balancing asexual and sexual reproduction and governing secondary metabolism in filamentous fungi. In the present study, we functionally investigated the NsdD ortholog PaNsdD in P. anserina. Compared to the wild-type strain, vegetative growth, ageing processes, sexual reproduction, stress tolerance, and interspecific confrontations in the mutant were drastically impaired, owing to the loss of function of PaNsdD. In addition, the production of 3-acetyl-4-methylpyrrole, a new metabolite identified in P. anserina in this study, was significantly inhibited in the ΔPaNsdD mutant. We also demonstrated the interplay of PaNsdD with the sterigmatocystin biosynthetic gene pathway, especially as the deletion of PaNsdD triggered the enhanced red-pink pigment biosynthesis that occurs only in the presence of the core polyketide synthase-encoding gene PaStcA of the sterigmatocystin pathway. Taken together, these results contribute to a better understanding of the global regulation mediated by PaNsdD in P. anserina, especially with regard to its unexpected involvement in the fungal ageing process and its interplay with the sterigmatocystin pathway. IMPORTANCE Fungal transcription factors play an essential role in coordinating multiple physiological processes. However, little is known about the functional characterization of transcription factors in the filamentous fungus Podospora anserina. In this study, a GATA-type regulator PaNsdD was investigated in P. anserina. The results showed that PaNsdD was a key factor that can control the fungal ageing process, vegetative growth, pigmentation, stress response, and interspecific confrontations and positively regulate the production of 3-acetyl-4-methylpyrrole. Meanwhile, a molecular interaction was implied between PaNsdD and the sterigmatocystin pathway. Overall, loss of function of PaNsdD seems to be highly disadvantageous for P. anserina, which relies on pure sexual reproduction in a limited life span. Therefore, PaNsdD is clearly indispensable for the survival and propagation of P. anserina in its complex ecological niches.

Keywords: 3-acetyl-4-methylpyrrole; Podospora anserina; sexual development; sterigmatocystin; transcription factor PaNsdD.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fungal Proteins / genetics
  • Fungal Proteins / metabolism
  • Fungi / metabolism
  • GATA Transcription Factors / metabolism
  • Podospora* / genetics
  • Podospora* / metabolism
  • Sterigmatocystin / metabolism
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Fungal Proteins
  • GATA Transcription Factors
  • Transcription Factors
  • Sterigmatocystin