Preliminary Phytochemical Analysis: In-Vitro Comparative Evaluation of Anti-arthritic and Anti-inflammatory Potential of Some Traditionally Used Medicinal Plants

Dose Response. 2022 Jan 10;20(1):15593258211069720. doi: 10.1177/15593258211069720. eCollection 2022 Jan-Mar.

Abstract

Background: Colchicum autumnale, Strychnous nux-vomica and Aloe barbadensis are the medicinal plants clinically utilized for the management of rhuematic disorders. Purpose: The present work was focused to evaluate the in-vitro anti-arthritic and anti-inflammatory activities of Colchicum (Colchicum autumnale), Nux-vomica (Strychnous nux-vomica), and Aloe-vera (Aloe barbadensis). Research Design: Primarily, the aqueous-ethanolic extracts of these medicinal plants were phytochemically screened followed by Fourier Transform Infrared (FTIR) analysis. Anti-arthritic activity by protein denaturation method and anti-inflammatory activity by human red blood cell (HRBC) membrane stabilization method at the concentration of 125, 250, and 500 µg/mL along with standard were performed. Results: Phytochemical screening revealed that alkaloids, saponins, terpenoids, phenols, and anthraquinones were found in all the extracts, and organic acids, amine group, aromatic or aliphatic compounds, esters and halogens, and phenolics were identified by FTIR. Protein denaturation method revealed that colchicum, nux-vomica, and aloe-vera showed maximum 98.5%, 99.6%, and 72.3% of inhibition at 500 µg/mL compared with that of standard drug, that is, Diclofenac sodium. Membrane stabilization method showed that colchicum, nux-vomica, and aloe-vera showed maximum 40.20%, 35.67%, and 40.1% protection at 500 µg/mL when compared with standard drug. Conclusion: It is concluded from the current study that extracts of colchicum, nux-vomica, and aloe-vera showed more potent effect and thus can be used as alternative options for the management of inflammatory and arthritic ailments.

Keywords: anti-inflammatory effect; antiarthritic effect; medicinal plants; phytochemical analysis.