Utility of arylglyoxal hydrates in synthesis of 4-aroyl-[1,3,5]triazino[1,2-a]benzimidazol-2(1H)-imines and 5-aryl-2-phenyl-4H-imidazol-4-imines

Mol Divers. 2022 Dec;26(6):3185-3191. doi: 10.1007/s11030-022-10379-8. Epub 2022 Jan 21.

Abstract

Nucleophilic substitution reaction for arylglyoxal hydrates (AGs-hydrate) was studied via their reaction with some mono- and multi-nucleophilic reagents in the presence of sodium ethoxide as basic catalyst. Thus, reaction of phenylglyoxal hydrate (1a) with hydrogen sulfide and/or ammonium acetate afforded the corresponding 2-hydroxy-2-mercapto-1-phenylethanone (2) and 2-oxo-2-phenylethanimidamide (3), respectively. Heterocyclization reaction of AGs-hydrate 1a-f with 1-(1H-benzimidazol-2-yl)guanidine (4) gave 4-aroyl-[1,3,5]triazino[1,2-a]benzimidazol-2(1H)-imines 5a-f. Also, a series of 5-aryl-2-phenyl-4H-imidazol-4-imines 7a-d was synthesized via one-pot multicomponent reaction of AGs-hydrate 1a-d, benzonitrile (6) and ammonium acetate. Imidazole-4-imines 7a-d can be also prepared using other route via multicomponent reaction of AGs-hydrate 1a-d, benzenecarboximidamide acetate (8) and ammonium acetate.

Keywords: 4H-imidazol-4-imine; Arylglyoxal; Carboximidamide; Heterocyclization; Nucleophilic substitution; [1,3,5]triazino[1,2-a]benzimidazole.

MeSH terms

  • Imidazoles*
  • Imines*

Substances

  • ammonium acetate
  • Imines
  • Imidazoles