Environmental determination of spring wheat yield in a climatic transition zone under global warming

Int J Biometeorol. 2022 Mar;66(3):481-491. doi: 10.1007/s00484-021-02196-9. Epub 2022 Jan 22.

Abstract

Understanding environmental determination of crop yield plays a critical role in agricultural. management in resource-limited areas. The climatic transition zone was a naturally ideal place to study. the relations between environmental factors and crop yield, due to its large annual variability of climatic factors and high speed of temperature increase under global warming. Our objectives were to identify the most critical environmental factor in determining spring wheat yield and analyze the convergence and divergence of water-yield relations for spring wheat in a typical climatic transition zone (semi-arid area). The study was conducted at two locations, Dingxi and Pengyang in Northwest China, with a long-term experiment (1987-2018) and two short-term irrigation experiments. Meanwhile, data of water use and spring wheat yield was collected from a series of previously published literature in the study area. The highest spring wheat yield was obtained under year pattern with higher soil water content at sowing (SWCS) and lower atmospheric dryness condition (ADC, the difference between reference evapotranspiration and precipitation during spring wheat growing season). SWCS was more important than precipitation during the growing season (PGS) in determining spring wheat yield in the study area. The relations between available water supply, water use, and spring wheat yield were convergence. However, SWCS had an impact on the relationship between yield and PGS and SWCS-yield relation was affected by ADC. We concluded that precipitation in 7 months before sowing was the dominant factor determining spring wheat yield in the climatic transition zone under global warming whereas the impact of high atmospheric evaporative demand resulted from the increasing temperature on crop yields and SWCS-yield relation must be taken into account for the analysis of environmental determination of spring wheat yield.

Keywords: Precipitation; Reference evapotranspiration; Soil water; Temperature; Year pattern.

MeSH terms

  • Agriculture
  • China
  • Climate
  • Global Warming*
  • Seasons
  • Triticum*
  • Water

Substances

  • Water