Reinforced Palmprint Reconstruction Attacks in Biometric Systems

Sensors (Basel). 2022 Jan 13;22(2):591. doi: 10.3390/s22020591.

Abstract

Biometric signals can be acquired with different sensors and recognized in secure identity management systems. However, it is vulnerable to various attacks that compromise the security management in many applications, such as industrial IoT. In a real-world scenario, the target template stored in the database of a biometric system can possibly be leaked, and then used to reconstruct a fake image to fool the biometric system. As such, many reconstruction attacks have been proposed, yet unsatisfactory naturalness, poor visual quality or incompleteness remains as major limitations. Thus, two reinforced palmprint reconstruction attacks are proposed. Any palmprint image, which can be easily obtained, is used as the initial image, and the region of interest is iteratively modified with deep reinforcement strategies to reduce the matching distance. In the first attack, Modification Constraint within Neighborhood (MCwN) limits the modification extent and suppresses the reckless modification. In the second attack, Batch Member Selection (BMS) selects the significant pixels (SPs) to compose the batch, which are simultaneously modified to a slighter extent to reduce the matching number and the visual-quality degradation. The two reinforced attacks can satisfy all the requirements, which cannot be simultaneously satisfied by the existing attacks. The thorough experiments demonstrate that the two attacks have a highly successful attack rate for palmprint systems based on the most state-of-the-art coding-based methods.

Keywords: batch member selection; modification constraint within neighborhood; naturalness; palmprint recognition; reinforced biometric reconstruction attack; visual quality.

MeSH terms

  • Algorithms
  • Biometric Identification*
  • Biometry
  • Dermatoglyphics
  • Hand / anatomy & histology