ZnO@Bi5O7I Heterojunction Derived from ZIF-8@BiOI for Enhanced Photocatalytic Activity under Visible Light

Materials (Basel). 2022 Jan 10;15(2):508. doi: 10.3390/ma15020508.

Abstract

In the study, ZIF-8@BIOI composites were synthesized by the hydrothermal method and then calcined to acquire the ZnO@Bi5O7I composite as a novel composite for the photocatalytic deterioration of the antibiotic tetracycline (TC). The prepared ZnO@Bi5O7I composites were physically and chemically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmet-Teller (BET) surface area, UV-Vis diffuse reflectance spectroscopy (DRS), emission fluorescence spectra, transient photocurrent response, electrochemical impedance spectra and Mott-Schottky. Among the composites formed an n-n heterojunction, which increased the separation efficiency of electrons and holes and the efficiency of charge transfer. After the photocatalytic degradation test of TC, it showed that ZnO@Bi5O7I (2:1) had the best photodegradation effect with an 86.2% removal rate, which provides a new approach to the treatment of antibiotics such as TC in wastewater.

Keywords: Bi5O7I; ZnO; composite material; n–n heterojunction; photocatalytic degradation.