Solvent-Free Fabrication of Biphasic Lipid-Based Microparticles with Tunable Structure

Pharmaceutics. 2021 Dec 27;14(1):54. doi: 10.3390/pharmaceutics14010054.

Abstract

Lipid-based biphasic microparticles are generally produced by long and complex techniques based on double emulsions. In this study, spray congealing was used as a solvent-free fabrication method with improved processability to transform water-in-oil non-aqueous emulsions into spherical solid lipid-based particles with a biphasic structure (b-MPs). Emulsions were prepared by melt emulsification using different compositions of lipids (Dynasan®118 and Compritol®888 ATO), surfactants (Cetylstearyl alcohol and Span®60) and hydrophilic carriers (PEGs, Gelucire®48/16 and Poloxamer 188). First, pseudo-ternary phase diagrams were constructed to identify the area corresponding to each emulsion type (coarse emulsion or microemulsion). The hydrophobicity of the lipid mostly affected the interfacial tension, and thus the microstructure of the emulsion. Emulsions were then processed by spray congealing and the obtained b-MPs were characterized in terms of thermal and chemical properties (by DSC and FT-IR), external and internal morphology (by SEM, CLSM and Raman mapping). Solid free-flowing spherical particles (main size range 200-355 µm) with different architectures were successfully produced: microemulsions led to the formation of particles with a homogeneous internal structure, while coarse emulsions generated "multicores-shell" particles consisting of variable size hydrophilic cores evenly distributed within the crystalline lipid phase. Depending on their composition and structure, b-MPs could achieve various release profiles, representing a more versatile system than microparticles based on a single lipid phase. The formulation and technological strategy proposed, provides a feasible and cost-effective way of fabricating b-MPs with tunable internal structure and release behavior.

Keywords: PEG; Raman mapping; core-shell; interfacial tension; long chain glycerides; melt emulsification; microemulsion; oral drug delivery; spray chilling; spray cooling.