Filtration of the Microalga Amphidinium carterae by the Polychaetes Sabella spallanzanii and Branchiomma luctuosum: A New Tool for the Control of Harmful Algal Blooms?

Microorganisms. 2022 Jan 12;10(1):156. doi: 10.3390/microorganisms10010156.

Abstract

Harmful algal blooms (HABs) are extreme biological events representing a major issue in marine, brackish, and freshwater systems worldwide. Their proliferation is certainly a problem from both ecological and socioeconomic contexts, as harmful algae can affect human health and activities, the marine ecosystem functioning, and the economy of coastal areas. Once HABs establish, valuable and environmentally friendly control actions are needed to reduce their negative impacts. In this study, the influence exerted by the filter-feeding activity of the two sabellid polychaetes Branchiomma luctuosum (Grube) and Sabella spallanzanii (Gmelin) on a harmful dinoflagellate was investigated. Clearance rates (C) and retention efficiencies were estimated by employing the microalga Amphidinium carterae Hulburt. The Cmax was 1.15 ± 0.204 L h-1 g-1 DW for B. luctuosum and 0.936 ± 0.151 L h-1 g-1 DW for S. spallanzanii. The retention efficiency was 72% for B. luctuosum and 68% for S. spallanzanii. Maximum retention was recorded after 30 min for both species. The obtained results contribute to the knowledge of the two polychaetes' filtration activity and to characterize the filtration process on harmful microalgae in light of the protection of water resources and human health. Both species, indeed, were extremely efficient in removing A. carterae from seawater, thus suggesting their employment as a new tool in mitigation technologies for the control of harmful algae in marine environments, as well as in the aquaculture facilities where HABs are one of the most critical threats.

Keywords: bioremediation; dinoflagellates; filtration activity; harmful algal blooms; polychaetes.