Determination of Vibroacoustic Parameters of Polyurethane Mats for Residential Building Purposes

Polymers (Basel). 2022 Jan 13;14(2):314. doi: 10.3390/polym14020314.

Abstract

This paper is aimed at investigating the use of polyurethane mats, usually used as ballast mats, for residential building purposes. Ballast mats have features that may improve the vibroacoustic comfort in residential rooms. Their strength is certainly an advantage, along with vibration and acoustic insulation. However, the problem that an engineer has to deal with, for example in modeling these types of mats, is a limited knowledge of the material's vibroacoustic parameters. Knowledge of these may be useful for residential buildings. This paper presents measurements of the vibroacoustic parameters of polyurethane mats, together with a suitable methodology and some results and analysis. The two main material parameters responsible for vibroacoustic protection were measured: the dynamic stiffness, which is related to the acoustic properties of the material, and the critical damping coefficient, which is obviously responsible for damping. The measurement methodology is clearly described. A total of five polyurethane materials with different densities were tested. It was possible to identify a relationship between the material density and the vibroacoustic parameters, which could offer an indication of which material to use, depending on the stimulus affecting a human in a given location.

Keywords: acoustic comfort; damping; dynamic stiffness; material properties; polyurethane; vibrational comfort.