Emerging Role of cAMP/AMPK Signaling

Cells. 2022 Jan 17;11(2):308. doi: 10.3390/cells11020308.

Abstract

The 5'-Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is a natural energy sensor in mammalian cells that plays a key role in cellular and systemic energy homeostasis. At the cellular level, AMPK supports numerous processes required for energy and redox homeostasis, including mitochondrial biogenesis, autophagy, and glucose and lipid metabolism. Thus, understanding the pathways regulating AMPK activity is crucial for developing strategies to treat metabolic disorders. Mounting evidence suggests the presence of a link between cyclic AMP (cAMP) and AMPK signaling. cAMP signaling is known to be activated in circumstances of physiological and metabolic stress due to the release of stress hormones, such as adrenaline and glucagon, which is followed by activation of membrane-bound adenylyl cyclase and elevation of cellular cAMP. Because the majority of physiological stresses are associated with elevated energy consumption, it is not surprising that activation of cAMP signaling may promote AMPK activity. Aside from the physiological role of the cAMP/AMPK axis, numerous reports have suggested its role in several pathologies, including inflammation, ischemia, diabetes, obesity, and aging. Furthermore, novel reports have provided more mechanistic insight into the regulation of the cAMP/AMPK axis. In particular, the role of distinct cAMP microdomains generated by soluble adenylyl cyclase in regulating basal and induced AMPK activity has recently been demonstrated. In the present review, we discuss current advances in the understanding of the regulation of the cAMP/AMPK axis and its role in cellular homeostasis and explore some translational aspects.

Keywords: AMPK; EPAC; PKA; adenylyl cyclase; autophagy; cAMP; mitophagy.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • AMP-Activated Protein Kinases / metabolism*
  • Animals
  • Cyclic AMP / metabolism*
  • Humans
  • Lipid Metabolism
  • Models, Biological
  • Protein Biosynthesis
  • Signal Transduction*

Substances

  • Cyclic AMP
  • AMP-Activated Protein Kinases