In Vivo Organic Bioelectronics for Neuromodulation

Chem Rev. 2022 Feb 23;122(4):4826-4846. doi: 10.1021/acs.chemrev.1c00390. Epub 2022 Jan 20.

Abstract

The nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and ∼1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator", focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Electronics*
  • Oxides
  • Semiconductors*

Substances

  • Oxides