The Effect of Cultivation Practices on Agronomic Performance, Elemental Composition and Isotopic Signature of Spring Oat (Avena sativa L.)

Plants (Basel). 2022 Jan 9;11(2):169. doi: 10.3390/plants11020169.

Abstract

The present study investigated the effects of cultivation practices on grain (oats) yield and yield components, such as straw yield, harvest index, thousand kernel weight, and plant lodging. In addition, multi-element composition and isotopic signature (δ13C, δ15N) of the oat grains were studied. The spring oat cultivar 'Noni' was grown in a long-term field experiment during 2015-2020, using three management practices: control without organic amendment, incorporation of manure every third year and incorporation of crop residues/cover crop in the rotation. Synthetic nitrogen (N) (0, 55, 110 and 165 kg/ha) was applied during oat development in each system. Multi-element analysis of mature grains from two consecutive years (2016 and 2017) was performed using EDXRF spectroscopy, while stable isotope ratios of carbon (C) and nitrogen (N) were obtained using an elemental analyzer coupled to an isotope ratio mass spectrometer (EA/IRMS). The results show how cultivation practices affect yield components and isotopic and elemental signatures. Increasing the N rate improved both the oat grain and straw yields and increased susceptibility to lodging. The results show how the elemental content (Si, Ca, Zn, Fe, Ti, Br and Rb) in the oat grains were influenced by intensification, and a noticeable decrease in elemental content at higher N rates was the result of a dilution effect of increased dry matter production. The mean δ15N values in oat grains ranged from 2.5‱ to 6.4‱ and decreased with increasing N rate, while δ13C values ranged from -29.9‱ to -28.9‱. Based on the δ15N values, it was possible to detect the addition of synthetic N above an N rate of 55 kg/ha, although it was impossible to differentiate between different management practices using stable isotopes.

Keywords: Avena sativa L.; cultivation practice; elements; energy dispersive X-ray fluorescence (EDXRF); isotopic signature; oat; yield.