ORI-Deep: improving the accuracy for predicting origin of replication sites by using a blend of features and long short-term memory network

Brief Bioinform. 2022 Mar 10;23(2):bbac001. doi: 10.1093/bib/bbac001.

Abstract

Replication of DNA is an important process for the cell division cycle, gene expression regulation and other biological evolution processes. It also has a crucial role in a living organism's physical growth and structure. Replication of DNA comprises of three stages known as initiation, elongation and termination, whereas the origin of replication sites (ORI) is the location of initiation of the DNA replication process. There exist various methodologies to identify ORIs in the genomic sequences, however, these methods have used either extensive computations for execution, or have limited optimization for the large datasets. Herein, a model called ORI-Deep is proposed to identify ORIs from the multiple cell type genomic sequence benchmark data. An efficient method is proposed using a deep neural network to identify ORIs for four different eukaryotic species. For better representation of data, a feature vector is constructed using statistical moments for the training and testing of data and is further fed to a long short-term memory (LSTM) network. To prove the effectiveness of the proposed model, we applied several validation techniques at different levels to obtain seven accuracy metrics, and the accuracy score for self-consistency, 10-fold cross-validation, jackknife and the independent set test is observed to be 0.977, 0.948, 0.976 and 0.977, respectively. Based on the results, it can be concluded that ORI-Deep can efficiently predict the sites of origin replication in DNA sequence with high accuracy. Webserver for ORI-Deep is available at (https://share.streamlit.io/waqarhusain/orideep/main/app.py), whereas source code is available at (https://github.com/WaqarHusain/OriDeep).

Keywords: DNA replication; LSTM; ORI; prediction; statistical moments.

MeSH terms

  • Eukaryota
  • Memory, Short-Term*
  • Neural Networks, Computer
  • Replication Origin*
  • Software