Long-distance control of pumpkin rootstock over cucumber scion under drought stress as revealed by transcriptome sequencing and mobile mRNAs identifications

Hortic Res. 2022 Jan 19:9:uhab033. doi: 10.1093/hr/uhab033. Online ahead of print.

Abstract

Grafting with pumpkin rootstock is commonly used not only to improve the quality of cucumber fruits but also to confer biotic or abiotic stress tolerance. However, the molecular mechanism of grafted cucumbers to drought stress and the possible roles of mobile mRNAs to improve stress tolerance have remained obscure. Hence, we conducted transcriptome sequencing and combined it with morpho-physiological experiments to compare the response of homografts (cucumber as scion and rootstock) (C) and heterografts (cucumber as scion and pumpkin as rootstock) (P) to drought stress. After applying drought stress, homografts and heterografts expressed 2960 and 3088 genes in response to drought stress, respectively. The identified DEGs in heterografts under drought stress were categorized into different stress-responsive groups, such as carbohydrate metabolism (involved in osmotic adjustment by sugar accumulation), lipid and cell wall metabolism (involved in cell membrane integrity by a reduction in lipid peroxidation), redox homeostasis (increased antioxidant enzymes activities), phytohormone (increased ABA content), protein kinases and transcription factors (TFs) using MapMan software. Earlier and greater H2O2 accumulation in xylem below the graft union was accompanied by leaf ABA accumulation in heterografts in response to drought stress. Greater leaf ABA helped heterografted cucumbers to sense and respond to drought stress earlier than homografts. The timely response of heterografts to drought stress led to maintain higher water content in the leaves even in the late stage of drought stress. The identified mobile mRNAs (mb-mRNAs) in heterografts were mostly related to photosynthesis which would be the possible reason for improved chlorophyll content and maximum photochemical efficiency of PSII (Fv/Fm). The existence of some stress-responsive pumpkin (rootstock) mRNAs in cucumber (scion), such as heat shock protein (HSP70, a well-known stress-responsive gene), led to the higher proline accumulation than homografts. The expression of the mobile and immobile stress-responsive mRNAs and timely response of heterografts to drought stress could improve drought tolerance in pumpkin-rooted plants.

Keywords: Grafting; Transcriptome; drought stress; mobile mRNA.