Utilizing waste duckweed from phytoremediation to synthesize highly efficient FeNxC catalysts for oxygen reduction reaction electrocatalysis

Sci Total Environ. 2022 May 1:819:153115. doi: 10.1016/j.scitotenv.2022.153115. Epub 2022 Jan 15.

Abstract

Duckweed is a universal aquatic plant to remove nitrogen source pollutants in the field of phytoremediation. Due to the naturally abundant nitrogen, synthesis of carbon materials from duckweed would be a high-value approach. In oxygen reduction reaction (ORR) of metal-air batteries and fuel cells, non-noble metals and heteroatoms co-doped electrocatalysts with excellent catalytic activity and remarkable stability are promising substitutes for Pt-based catalysts. The first-class ORR performance is determined by appropriate pore structure and active sites, which are strongly associated with the feasible synthesis methods. Herein, a facile one-step synthesis strategy for the transition metals- and nitrogen-codoped carbon (MNxC) based catalysts with hierarchically porous structure was developed. The MNxC (M = Fe, Co, Ni, and Mn) active sites were constructed and FeNxC (D-ZB-Fe) was the best electrocatalyst with excellent ORR performance. Results showed that D-ZB-Fe exhibited an obvious honeycomb porous structure with specific surface area of 1342.91 m2·g-1 and total pore volume of 1.085 cm3·g-1. It also possessed considerable active atoms and sites, where the proportion of pyridine N and graphite N was up to 72.9%. The above feature made for a superior ORR electrocatalytic activity. In specific, the onset and half-wave potential were 0.974 V and 0.857 V vs. RHE (Reversible Hydrogen Electrode), respectively. When compared with performances of commercial Pt/C, the four-electron pathway and relatively low peroxide yield, ca. 5%, were almost equivalent. Furthermore, D-ZB-Fe showed an excellent stability and remarkably methanol tolerance by the durability test. In conclusion, this research provides a new synthesis strategy of electrocatalysts with porous structures and active sites.

Keywords: Hierarchical porous; Nitrogen-rich; One-pot synthesis; Phytoremediation of duckweed; “FeN(x)C” structure.

MeSH terms

  • Araceae*
  • Biodegradation, Environmental
  • Catalysis
  • Nitrogen* / chemistry
  • Oxygen / chemistry

Substances

  • Nitrogen
  • Oxygen