Solamargine inhibits the growth of hepatocellular carcinoma and enhances the anticancer effect of sorafenib by regulating HOTTIP-TUG1/miR-4726-5p/MUC1 pathway

Mol Carcinog. 2022 Apr;61(4):417-432. doi: 10.1002/mc.23389. Epub 2022 Jan 17.

Abstract

Hepatocellular carcinoma (HCC) is one of the most common primary malignancies. Drug resistance has significantly prevented the clinical application of sorafenib (SF), a first-line targeted medicine for the treatment of HCC. Solamargine (SM), a natural alkaloid, has shown potential antitumor activity, but studies about antitumor effect of SM are obviously insufficient in HCC. In the present study, we found that SM significantly inhibited the growth of HCC and enhanced the anticancer effect of SF. In brief, SM significantly inhibited the growth of HepG2 and Huh-7 cells. The combination of SM and SF showed a synergistic antitumor effect. Mechanistically, SM downregulated the expression of long noncoding RNA HOTTIP and TUG1, followed by increasing the expression of miR-4726-5p. Moreover, miR-4726-5p directly bound to the 3'-UTR region of MUC1 and decreased the expression of MUC1 protein. Overexpression of MUC1 partially reversed the inhibitory effect of SM on HepG2 and Huh-7 cells viability, which suggested that MUC1 may be the key target in SM-induced growth inhibition of HCC. More importantly, the combination of SM and SF synergistically restrained the expression of MUC1 protein. Taken together, our study revealed that SM inhibited the growth of HCC and enhanced the anticancer effect of SF through HOTTIP-TUG1/miR-4726-5p/MUC1 signaling pathway. These findings will provide potential therapeutic targets and strategies for the treatment of HCC.

Keywords: MUC1; hepatocellular carcinoma; solamargine; sorafenib; synergistic anticancer effect.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Hepatocellular* / drug therapy
  • Carcinoma, Hepatocellular* / genetics
  • Carcinoma, Hepatocellular* / metabolism
  • Cell Line, Tumor
  • Cell Proliferation
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Liver Neoplasms* / drug therapy
  • Liver Neoplasms* / genetics
  • Liver Neoplasms* / metabolism
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Mucin-1 / genetics
  • Mucin-1 / metabolism
  • Mucin-1 / therapeutic use
  • RNA, Long Noncoding* / genetics
  • Solanaceous Alkaloids
  • Sorafenib / pharmacology

Substances

  • MUC1 protein, human
  • MicroRNAs
  • Mucin-1
  • RNA, Long Noncoding
  • Solanaceous Alkaloids
  • TUG1 long noncoding RNA, human
  • long noncoding RNA HOTTIP, human
  • beta-solamarine
  • Sorafenib