Detection of AmpC and ESBL-producing Enterobacterales isolated from urinary tract infections in Tunisia

Acta Microbiol Immunol Hung. 2022 Jan 17. doi: 10.1556/030.2022.01630. Online ahead of print.

Abstract

Urinary tract infections (UTIs) are the most frequent human infections in community and hospitals. This study aimed to determine the distribution of bacterial uropathogens among urinary tract infections diagnosed within the regional hospital Houcine Bouzaiene (Gafsa, South West Tunisia) during a survey of 54 days from the 8th of November to the 31st of December 2017. Enterobacterales strains were tested for antimicrobial resistance by disk diffusion method and extended-spectrum β-lactamase (ESBL) production was tested by double-disc synergy test. Strains were further subjected to a molecular assessment of ESBL and AmpC β-lactamase production by PCR. Overall, 173 bacterial isolates were studied, out of which 91.3% were Enterobacterales. Escherichia coli was the dominant pathogen, followed by Klebsiella pneumoniae. High to moderate resistance rates were observed, ranging from 66% to 90.7% for penicillins, from 6.7% to 18.6% for cephalosporins and from 16.2% to 25.4% for fluoroquinolones. Enterobacterales with decreased susceptibility to third-generation cephalosporins (3rd GC) carried several resistance genes: blaCTX-M group 1 and group 9, and ACC and FOX AmpC β-lactamase genes. Overall, ESBLs and AmpC β-lactamases were detected in 57% and 14% of the 3rd GC-resistant isolates, respectively. This study proved the high potential of K. pneumaniae species to develop resistance against commonly used antibiotics. Thus, rigorous monitoring of the antibiotic resistance of clinical pathogens have to be implemented in Tunisia. Our results are very relevant to evaluate efficiency of the Tunisian therapeutic strategies against UTIs and adapt them to the emerging problem of antimicrobial resistance.

Keywords: AmpC; ESBLs; UTI; antimicrobial resistance; third-generation cephalosporin; urinary tract infection.