Enhancing the methanol tolerance of Candida antarctica lipase B by saturation mutagenesis for biodiesel preparation

3 Biotech. 2022 Jan;12(1):22. doi: 10.1007/s13205-021-03095-x. Epub 2021 Dec 22.

Abstract

Methanol tolerance of lipase is one of the important factors affecting its esterification ability in biodiesel preparation. By B factor indicated prediction of Candida antarctica lipase B (CalB) surface amino acids, eight sites (Val139, Ala146, Leu147, Pro218, Val286, Ala287, Val306, and Gly307) with high B value indicating more flexibility were chosen to perform saturation mutagenesis. High-methanol-tolerant variants, CalB-P218W and -V306N, created larger haloes on emulsified tributyrin solid plate including 15% (v/v) methanol and showed 19% and 31% higher activity over wild-type CalB (CalB-WT), respectively. By modeling, a newly formed hydrogen bond in CalB-V306N and hydrophobic force in CalB-P218W contributing more stability in protein may have resulted in increased methanol tolerance. CalB-P218W and -V306N transesterified the soybean oil into biodiesel at 30 °C by 85% and 89% yield, respectively, over 82% by CalB-WT for 24 h reactions. These results may provide a basis for molecular engineering of CalB and expand its applications in fuel industries. The as-developed semi-rational method could be utilized to enhance the stabilities of many other industrial enzymes.

Keywords: Biodiesel; Candida antarctica; Lipase; Methanol tolerance; Saturation mutagenesis.