MiR-937-3p promotes metastasis and angiogenesis and is activated by MYC in lung adenocarcinoma

Cancer Cell Int. 2022 Jan 15;22(1):31. doi: 10.1186/s12935-022-02453-w.

Abstract

Background: Non-small cell lung cancer (NSCLC) is still one of the diseases with the highest mortality and morbidity, and lung adenocarcinoma (LUAD) accounts for more than half of all NSCLC cases in most countries. miRNA can be used as a potential biological marker and treatment for lung adenocarcinoma. However, the effect of miR-937-3p to the invasion and metastasis of LUAD cells is not clear.

Methods: miRNA microarray is used to analyze the expression of miRNA in lung adenocarcinoma tissue. Transwell migration, Wound-healing assay and Western blot analysis are used to analyze cell migration, invasion and epithelial-mesenchymal transition (EMT) capabilities. Tube formation is used to assess angiogenesis ability. In addition, dual luciferase reporter gene detection is used to identify the potential binding between miRNA and target mRNA. In vivo experiments were performed on male NOD/SCID nude mice by tail vein injection to establish a transplanted tumor model. The CHIP experiment is used to verify the transcription factors of miRNA.

Result: In our study, miR-937-3p was high-regulated in LUAD cell lines and tissues, and its expression level was related to tumor progression. We found that miR-937-3p high-expression has an effect on cell invasion and metastasis. In molecular mechanism, miR-937-3p causes SOX11 reduction by directly binding to the 3'-UTR of SOX11.In addition, MYC affects miR-937-3p transcription by binding to its promoter region.

Conclusions: Our research shows that miR-937-3p is mediated by MYC and can control the angiogenesis, invasion and metastasis of LUAD by regulating SOX11, thereby promoting the progress of LUAD. We speculate that miR-937-3p can be used as a therapeutic target and potential biomarker for LUAD.

Keywords: EMT; Lung adenocarcinoma; MYC; SOX11; miR-937-3p.