Vitrification of manually stage-selected embryos of Drosophila have significantly higher survival and emergence - Consequences for insect germplasm storage

Cryobiology. 2022 Apr:105:83-87. doi: 10.1016/j.cryobiol.2022.01.002. Epub 2022 Jan 13.

Abstract

Embryonic selection for vitrification and cryostorage in Drosophila and other dipterans is generally carried out by gross observation of the embryonic development at a constant temperature. In this study, the effect of embryo developmental temperature (19, 20 and 21 °C) on the stage specific convergence of the embryonic development to the developmental stages 15-17, which are relevant for cryopreservation, was studied in a flightless mutant strain of Drosophila melanogaster and compared with the Ore-R strain. The temperature that allowed for the best convergence to stage 16 was chosen for further selection and treatment of the embryos. The converged embryos (SS) were directly treated or further manually sorted (MS) for the requisite developmental stage to reduce the number of non-converged embryos. These selected embryos were then permeabilized and cryopreserved. While at all the three incubation temperatures the embryos exhibited convergence peaks, it was only at 20 °C and at hour 22 that a maximum number of stage 16 embryos converged and remained at a much higher proportion than the other developmental stages in both the strains. When permeabilized, MS embryos showed higher mean viability and hatching proportion compared to SS embryos (wingless: ∼0.70 vs. ∼0.58; Ore-R: ∼0.77 versus 0.54). Upon vitrification, the manually selected embryos hatched and survived at significantly higher mean rates than the converged embryos at stage 16 (wingless: 0.32 vs. ∼0.08; Ore-R: 0.47 vs. 0.15) after adjusting for permeabilization mortality. The maximum proportion hatch after vitrified storage that could be obtained by this method was 0.74 for both the wingless and Ore-R strains. More than 55% of the larvae pupated and >72% of the pupae eclosed in MS and vitrified wingless stage 16. In Ore-R, well over 85% of the larvae pupariated and eclosed as flight capable flies.

Keywords: Conservation; Cryopreservation; Developmental stage; Drosophila; Embryo permeabilization; Stage-selection; Vitrification.

MeSH terms

  • Animals
  • Cryopreservation* / methods
  • Drosophila
  • Drosophila melanogaster / genetics
  • Embryonic Development / genetics
  • Larva
  • Vitrification*