Tuning optical properties of CsPbBr3by mixing Nd3+trivalent lanthanide halide cations for blue light emitting devices

Nanotechnology. 2022 Feb 3;33(17). doi: 10.1088/1361-6528/ac4b2e.

Abstract

In recent years, significant progress has been made in the red and green perovskite quantum dots (PQDs) based light-emitting devices. However, a scarcity of blue-emitting devices that are extremely efficient precludes their research and development for optoelectronic applications. Taking advantage of tunable bandgaps of PQDs over the entire visible spectrum, herein we tune optical properties of CSPbBr3by mixing Nd3+trivalent lanthanide halide cations for blue light-emitting devices. The CsPbBr3PQDs doped with Nd3+trivalent lanthanide halide cations emitted strong photoemission from green into the blue region. By adjusting their doping concentration, a tunable wavelength from (515 nm) to (450 nm) was achieved with FWHM from (37.83 nm) to (16.6 nm). We simultaneously observed PL linewidth broadening thermal quenching of PL and the blue shift of the optical bandgap from temperature-dependent PL studies. The Nd3+cations into CsPbBr3PQDs more efficiently reduced non-radiative recombination. As a result of the efficient removal of defects from PQDs, the photoluminescence quantum yield (PLQY) has been significantly increased to 91% in the blue-emitting region. Significantly, Nd3+PQDs exhibit excellent long-term stability against the external environment, including water, temperature, and ultraviolet light irradiation. Moreover, we successfully transformed Nd3+doped PQDs into highly fluorescent nanocomposites. Incorporating these findings, we fabricate and test a stable blue light-emitting LED with EL emission at (462 nm), (475 nm), and successfully produce white light emission from Nd3+doped nanocomposites with a CIE at (0.32, 0.34), respectively. The findings imply that low-cost Nd3+doped perovskites may be attractive as light converters in LCDs with a broad color gamut.

Keywords: Perovskite quantum dots; blue light-emitting devices; doping; optoelectronics.