Quantifying ecological and health risks of ground-level O3 across China during the implementation of the "Three-year Action Plan for Cleaner Air"

Sci Total Environ. 2022 Apr 15:817:153011. doi: 10.1016/j.scitotenv.2022.153011. Epub 2022 Jan 11.

Abstract

After China implemented the Air Pollution Prevention and Control Action Plan (APPCAP), PM2.5 concentrations decreased but were still higher than national standards in major areas and ozone (O3) concentration increased unintentionally. To further decrease PM2.5 concentrations and reduce days with severe air pollution, the government promulgated the "Three-year (2018-2020) Action Plan for Cleaner Air" (the Three-year Action Plan) in 2018. During the three-year Action Plan, a few studies reported a continuous decline in PM2.5, but it is unclear whether O3 and its effects also increase with the decrease of PM2.5 like during APPCAP. In this study, for the first time, we systematically assessed changes in ground-level O3 concentrations and related ecological and health risks during the period of the Three-year Action Plan using nationwide O3 measurements. The national MDA8, Exceedance, and SOMO35 indicators were reduced by 3.8%, 28.5%, and 12.6%, respectively, ecological risk indicators of M12, M7, SUM06, AOT40, and W126 were reduced by 5.4%, 5.6%, 19.5%, 15.4%, and 18.6%, respectively, from 2018 to 2020. Spatially, the greatest reduction in all the indicators except MDA8 occurred in Pearl River Delta, followed by Fen Wei Plains, while Beijing-Tianjin-Hebei, Chengdu-Chongqing, and Yangtze River Delta presented relatively small reductions. Between 2018 and 2020, the production losses caused by O3 for wheat and rice decreased by 21.4% and 17.6%, respectively. Long-term exposure to O3 across China over 2020 was estimated to cause about 160,795 (95% CI: 81,515-312,983) for all-cause mortality, 107,128 (95% CI: 36,703-173,823) for cardiovascular mortality, and 34,444 (95% CI: 0-72,609) for respiratory mortality, indicating decreases of 9.93%, 9.86%, and 9.78%, respectively, compared to the year 2018. Taken together, our results provided the first direct evidence for China's efforts to control O3 pollution in recent years.

Keywords: Ground-level O(3); O(3) indicators; Risk assessment; Spatiotemporal change.

MeSH terms

  • Air Pollutants* / analysis
  • Air Pollution* / analysis
  • Air Pollution* / prevention & control
  • China
  • Environmental Monitoring
  • Ozone* / analysis
  • Particulate Matter / analysis

Substances

  • Air Pollutants
  • Particulate Matter
  • Ozone