Reactivity of molybdenum-nitride complex bearing pyridine-based PNP-type pincer ligand toward carbon-centered electrophiles

Dalton Trans. 2022 Feb 1;51(5):1946-1954. doi: 10.1039/d1dt03952k.

Abstract

A molybdenum-nitride complex bearing a pyridine-based PNP-type pincer ligand derived from dinitrogen is reacted with various kinds of carbon-centered electrophiles to functionalize the nitride ligand in the molybdenum complex. Methylation with MeOTf and acylation with diphenylacetyl chloride of the nitride complex afford the corresponding imide complexes via a carbon-nitrogen bond formation. In the case of reactions with phenylisocyanate and diphenylketene, the PNP ligand works as a non-innocent ligand to form the corresponding ureate and acylimide complexes, respectively. These newly synthesized complexes are characterized by X-ray analysis. As a further transformation of the prepared imide complexes, hydrolysis of the molybdenum-acylimide complex proceeds to give the corresponding amide as an organonitrogen compound together with the corresponding molybdenum-oxo complex. This result indicates that the nitrogen molecule is converted into organic amide mediated by the molybdenum-nitride complex.