A Bottom-Up Approach Grafts Collagen Fibrils Perpendicularly to Titanium Surfaces

ACS Appl Bio Mater. 2020 Sep 21;3(9):6088-6095. doi: 10.1021/acsabm.0c00678. Epub 2020 Aug 28.

Abstract

Currently, titanium dental implant apposition to bone is achieved via osseointegration leading to ankylosis. A biomimetic Sharpey's fiber-type interface could be constructed around collagen fibrils robustly attached and projecting perpendicularly from the titanium surface. We present a proof-of-concept for a method to create upright-standing collagen nanofibrils covalently bonded to a titanium surface. The method involves activation of the titanium surface using a plasma discharge treatment followed by functionalization with an oxyamine-terminated silane coupling molecule. Using Rapoport's salt, the N-termini of individual type I collagen monomers are converted to ketones. When presented to the functionalized titanium surface, these ketones form oxime linkages with the silanes thus immobilizing the collagen. In a two-step process, these covalently bonded monomers act as sites for the formation of fibrils. Many fibril-surface junctions were observed by scanning electron microscopy on three different surfaces. These findings set the stage for working toward a high surface density of such features which might act as a platform from which to build a synthetic ligament.

Keywords: biomimetic transamination; collagen; nanostructures; surface chemistry; titanium.