Electronic Transport in the Biopigment Sepia Melanin

ACS Appl Bio Mater. 2020 Aug 17;3(8):5244-5252. doi: 10.1021/acsabm.0c00373. Epub 2020 Jul 21.

Abstract

Eumelanin is the most common form of the pigment melanin in the human body, with diverse functions including photoprotection, antioxidant behavior, metal chelation, and free radical scavenging. Melanin also plays a role in melanoma skin cancer and Parkinson's disease. Sepia melanin is a natural eumelanin extracted from the ink sac of cuttlefish. Eumelanin is an ideal candidate to eco-design technologies based on abundant, biosourced, and biodegradable organic electronic materials to alleviate the environmental footprint of the electronics sector. Herein, the focus is on the reversible electrical resistive switching in dry and wet Sepia eumelanin pellets, pointing to the possibility of predominant electronic transport satisfying conditio sine qua non to develop melanin-based electronic devices. These findings shed light on the possibility to describe the transport physics of dry eumelanin using the amorphous semiconductor model. Results are of tremendous importance for the development of sustainable organic electronics.

Keywords: Sepia melanin; bio-sourced materials; electronic transport; reversible resistive switching; sustainable (green) organic electronics.