Mice hypomorphic for Pitx3 show robust entrainment of circadian behavioral and metabolic rhythms to scheduled feeding

Cell Rep. 2022 Jan 11;38(2):109865. doi: 10.1016/j.celrep.2021.109865.

Abstract

Pitx3ak mice lack a functioning retina and develop fewer than 10% of dopamine neurons in the substantia nigra. Del Río-Martín et al. (2019) reported that entrainment of circadian rhythms to daily light-dark (LD) cycles is absent in these mice, and that rhythms of locomotor activity, energy expenditure, and other metabolic variables are disrupted with food available ad libitum and fail to entrain to a daily feeding. The authors propose that retinal innervation of the suprachiasmatic nucleus is required for development of cyclic metabolic homeostasis, but methodological issues limit interpretation of the results. Using standardized feeding schedules and procedures for distinguishing free-running from entrained circadian rhythms, we confirm that behavioral and metabolic rhythms in Pitx3ak mice do not entrain to LD cycles, but we find no impairment in circadian organization of metabolism with food available ad libitum and no impairment in entrainment of metabolic or behavioral rhythms by daily feeding schedules. This Matters Arising paper is in response to Del Río-Martín et al. (2019), published in Cell Reports. See also the response by Fernandez-Perez et al. (2022), published in this issue.

Keywords: Pitx3(ak); aphakia mouse; circadian; dopamine; food anticipatory activity; food entrainment; metabolism.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Comment

MeSH terms

  • Animals
  • Circadian Rhythm
  • Feeding Behavior*
  • Mice
  • Motor Activity
  • Photoperiod
  • Suprachiasmatic Nucleus*