RCDPeaks: memory-efficient density peaks clustering of long molecular dynamics

Bioinformatics. 2022 Mar 28;38(7):1863-1869. doi: 10.1093/bioinformatics/btac021.

Abstract

Motivation: Density Peaks is a widely spread clustering algorithm that has been previously applied to Molecular Dynamics (MD) simulations. Its conception of cluster centers as elements displaying both a high density of neighbors and a large distance to other elements of high density, particularly fits the nature of a geometrical converged MD simulation. Despite its theoretical convenience, implementations of Density Peaks carry a quadratic memory complexity that only permits the analysis of relatively short trajectories.

Results: Here, we describe DP+, an exact novel implementation of Density Peaks that drastically reduces the RAM consumption in comparison to the scarcely available alternatives designed for MD. Based on DP+, we developed RCDPeaks, a refined variant of the original Density Peaks algorithm. Through the use of DP+, RCDPeaks was able to cluster a one-million frames trajectory using less than 4.5 GB of RAM, a task that would have taken more than 2 TB and about 3× more time with the fastest and less memory-hunger alternative currently available. Other key features of RCDPeaks include the automatic selection of parameters, the screening of center candidates and the geometrical refining of returned clusters.

Availability and implementation: The source code and documentation of RCDPeaks are free and publicly available on GitHub (https://github.com/LQCT/RCDPeaks.git).

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Cluster Analysis
  • Documentation
  • Molecular Dynamics Simulation*
  • Software