P-Doped NiTe2 with Te-Vacancies in Lithium-Sulfur Batteries Prevents Shuttling and Promotes Polysulfide Conversion

Adv Mater. 2022 Mar;34(11):e2106370. doi: 10.1002/adma.202106370. Epub 2022 Feb 3.

Abstract

Lithium-sulfur (Li-S) batteries have been hindered by the shuttle effect and sluggish polysulfide conversion kinetics. Here, a P-doped nickel tellurium electrocatalyst with Te-vacancies (P⊂NiTe2- x ) anchored on maize-straw carbon (MSC) nanosheets, served as a functional layer (MSC/P⊂NiTe2- x ) on the separator of high-performance Li-S batteries. The P⊂NiTe2- x electrocatalyst enhanced the intrinsic conductivity, strengthened the chemical affinity for polysulfides, and accelerated sulfur redox conversion. The MSC nanosheets enabled NiTe2 nanoparticle dispersion and Li+ diffusion. In situ Raman and ex situ X-ray absorption spectra confirmed that the MSC/P⊂NiTe2- x restrained the shuttle effect and accelerated the redox conversion. The MSC/P⊂NiTe2- x -based cell has a cyclability of 637 mAh g-1 at 4 C over 1800 cycles with a degradation rate of 0.0139% per cycle, high rate performance of 726 mAh g-1 at 6 C, and a high areal capacity of 8.47 mAh cm-2 under a sulfur configuration of 10.2 mg cm-2 , and a low electrolyte/sulfur usage ratio of 3.9. This work demonstrates that vacancy-induced doping of heterogeneous atoms enables durable sulfur electrochemistry and can impact future electrocatalytic designs related to various energy-storage applications.

Keywords: P-doping; Te-vacancy; electrocatalysts; lithium-sulfur batteries; modified separator.