Assessment of the Ecotoxicity of Pollution by Potentially Toxic Elements by Biological Indicators of Haplic Chernozem of Southern Russia (Rostov region)

Water Air Soil Pollut. 2022;233(1):18. doi: 10.1007/s11270-021-05496-3. Epub 2022 Jan 5.

Abstract

The content of various chemical elements such as metals, metalloids, and nonmetals in the environment is associated with natural and anthropogenic sources. It is necessary to normalize the content of metals, metalloids, and nonmetals as potentially toxic elements (PTE) in the Haplic Chernozem. The soils of the Southern Russia are of high quality and fertility. However, this type of soil, like Haplic Chernozem, is subject to contamination with a wide range of PTE. The aim of the work was to rank metals, metalloids, and nonmetals by ecotoxicity in Haplic Chernozem. To assess the ecotoxicity of chernozem, data for 15 years (2005-2020) were used. Biological indicators used to assess the ecotoxicity of Haplic Chernozem: catalase activity, cellulolytic activity, number of bacteria, Azotobacter spp. abundance, to change of length of radish's roots. Based on these biological indicators, an integral indicator of the state of Haplic Chernozem was calculated. The ecotoxicity of 23 metals (Cd, Hg, Pb, Cr, Cu, Zn, Ni, Co, Mo, Mn, Ba, Sr, Sn, V, W, Ag, Bi, Ga, Nb, Sc, Tl, Y, Yb), 5 metalloids (B, As, Ge, Sb, Te) and 2 nonmetals (F, Se) as priority pollutants. It is proposed to distinguish three hazard classes of metals, metalloids, and nonmetals to Haplic Chernozem: I class - Te, Ag, Se, Cr, Bi, Ge, Sn, Tl, Hg, Yb, W, Cd; II class - As, Co, Sc, Sb, Cu, Ni, B, Nb, Pb, Ga; III class - Sr, Y, Mo, Zn, V, Ba, Mn, F. It is advisable to use the results of the study for predictive assessment of the impact of metals, metalloids, and nonmetals on the ecological state of the soil during pollution.

Keywords: Biotesting; Ecotoxicity; Haplic Chernozem; Hazard classes; Metalloids; Metals; Nonmetals; Pollutants; Ranking.