An Electrochemical Sensor Based on a Nitrogen-Doped Carbon Material and PEI Composites for Sensitive Detection of 4-Nitrophenol

Nanomaterials (Basel). 2021 Dec 29;12(1):86. doi: 10.3390/nano12010086.

Abstract

A glassy carbon electrode (GCE) was modified with nitrogen-doped carbon materials (NC) and polyethyleneimine (PEI) composites to design an electrochemical sensor for detecting 4-nitrophenol (4-NP). The NC materials were prepared by a simple and economical method through the condensation and carbonization of formamide. The NC materials were dispersed in a polyethyleneimine (PEI) solution easily. Due to the excellent properties of NC and PEI as well as their synergistic effect, the electrochemical reduction of the 4-NP on the surface of the NC-PEI composite modified electrode was effectively enhanced. Under the optimized conditions, at 0.06-10 μM and 10-100 μM concentration ranges, the NC-PEI/GCE sensor shows a linear response to 4-NP, and the detection limit is 0.01 μM (the signal-to-noise ratio is three). The reliability of the sensor for the detection of 4-NP in environmental water samples was successfully evaluated. In addition, the sensor has many advantages, including simple preparation, fast response, high sensitivity and good repeatability. It may be helpful for potential applications in detecting other targets.

Keywords: 4-nitrophenol; nitrogen-doped carbon material; polyethyleneimine; voltammetric detection; water sample.