Using the Effect of Compression Stress in Fatigue Analysis of the Roller Bearing for Bimodal Stress Histories

Materials (Basel). 2021 Dec 28;15(1):196. doi: 10.3390/ma15010196.

Abstract

A new approach based on the direct spectral method for fatigue analysis of elements subjected to bimodal stress histories, including high compression effects, is proposed. A correction factor, taking into account the influence of the mean compressive stresses, is used in the proposed method. Equivalent amplitude is estimated, based on criteria proposed by Smith, Watson, and Tooper, and by Bergmann and Seeger. The method is presented with example of a thrust roller bearing. Two cases in which the rollers were subjected to constant force 206 N (where constant amplitude stresses occurred in the rollers) and cyclic force (where bimodal stresses with variable amplitudes occurred in the rollers) are studied. It is observed that multiaxial fatigue criteria (Crossland, Papadopoulos) do not include the influence of bimodal stresses and should not be used for such loading conditions. The proposed method includes both kinds of stress waveforms in the fatigue analysis and can be applied for the accurate identification of stress components and the determination of fatigue life. The damage rate calculated by the proposed approach for rollers subjected to a cyclic force (equivalent load equal to 151 N) was 0.86, which is in good agreement with the recommendations provided in the literature. The obtained accuracy of the proposed method is above 95%.

Keywords: bimodal stresses; fatigue life; mean stress effect; multiaxial fatigue; multiaxial high-cycle fatigue criteria; rolling contact fatigue; spectral method.