Mine Clay Washing Residues as a Source for Alkali-Activated Binders

Materials (Basel). 2021 Dec 23;15(1):83. doi: 10.3390/ma15010083.

Abstract

The aim of this paper is to promote the use of mine clay washing residues for the preparation of alkali activated materials (AAMs). In particular, the influence of the calcination temperature of the clayey by-product on the geopolymerization process was investigated in terms of chemical stability and durability in water. The halloysitic clay, a mining by-product, has been used after calcination and mixed with an alkaline solution to form alkali activated binders. Attention was focused on the influence of the clay's calcination treatment (450-500-600 °C) on the geopolymers' microstructure of samples, remaining in the lower limit indicated by the literature for kaolinite or illite calcination. The mixtures of clay and alkali activators (NaOH 8M and Na-silicate) were cured at room temperature for 28 days. The influence of solid to liquid ratio in the mix formulation was also tested in terms of chemical stability measuring the pH and the ionic conductivity of the eluate after 24-h immersion time in water. The results reported values of ionic conductivity higher for samples made with untreated clay or with low temperature of calcination (≥756 mS/m) compared with values of samples made with calcined clay (292 mS/m). This result suggests that without a proper calcination of the as-received clay it was not possible to obtain 25 °C-consolidated AAMs with good chemical stability and dense microstructure. The measures of integrity test, pH, and ionic conductivity in water confirmed that the best sample is made with calcined clay at 600 °C, being similar (53% higher ionic conductivity of the eluate) or equal (integrity test and pH) to values recorded for the metakaolin-based geopolymer considered the reference material. These results were reflected in term of reticulation and morphology of samples through the analysis with scanning electron microscope (SEM) and X-ray diffraction (XRD), which show a dense and homogeneous microstructure predominantly amorphous with minor amounts of quartz, halloysite, and illite crystalline phases. Special attention was dedicated to this by-product to promote its use, given that kaolinite (and metakaolin), as primary mineral product, has a strong impact on the environment. The results obtained led us to consider this halloysite clay very interesting as an aluminosilicate precursor, and extensively deepening its properties and reactivity for the alkaline activation. In fact, the heart of this work is to study the possibility of reusing this by-product of an industrial process to obtain more sustainable high-performance binders.

Keywords: alkali-activated materials; durability; geopolymers; mechanical properties; mine clay washing residues; recycling; synthesis; thermal properties; waste.