Genotoxicity assessment of cellulose nanofibrils using a standard battery of in vitro and in vivo assays

Toxicol Rep. 2021 Dec 16:9:68-77. doi: 10.1016/j.toxrep.2021.12.006. eCollection 2022.

Abstract

Cellulose nanofibrils (CNFs) are identified as novel nanomaterials with many potential applications. Since CNFs are fibrous manufactured nanomaterials, their potential carcinogenic effects and mesothelial toxicity raise some concerns. In this study, we conducted a standard battery of in vitro and in vivo assays to evaluate the genotoxicity of two CNF types using different manufacturing methods and physicochemical properties. Namely, one was CNF produced via chemical modification by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation, while the other was CNF produced via mechanical defibrillation using needle bleached kraft pulp. A bacterial reverse mutation test and a mouse lymphoma TK assay revealed that CNFs at 100 μg/mL did not induce bacterial reverse mutations and in vitro mammalian cell gene mutation. Further, in vitro chromosomal aberration tests demonstrated that CNFs at 100 μg/mL did not induce chromosomal aberration in Chinese hamster lung fibroblasts. From the mammalian erythrocyte micronucleus test, no statistically significant increase was observed in the proportion of micronucleated polychromatic erythrocytes in the bone marrow cells of rats intratracheally instilled with any concentration of CNFs (0.25-1.0 mg/kg) compared with values from respective negative control groups. Therefore, this battery of in vitro and in vivo assays illustrated that the CNFs examined in this study did not induce genotoxicity, suggesting our results provide valuable insight on the future use of these materials in various industrial applications.

Keywords: A mouse lymphoma TK test; Ames test; Cellulose nanofibrils; Chromosomal aberration test; Genotoxicity; Micronucleus test.