Infrared spectroscopic signature of a hydroperoxyalkyl radical (•QOOH)

J Chem Phys. 2022 Jan 7;156(1):014301. doi: 10.1063/5.0076505.

Abstract

Infrared (IR) action spectroscopy is utilized to characterize a prototypical carbon-centered hydroperoxyalkyl radical (•QOOH) transiently formed in the oxidation of volatile organic compounds. The •QOOH radical formed in isobutane oxidation, 2-hydroperoxy-2-methylprop-1-yl, •CH2(CH3)2COOH, is generated in the laboratory by H-atom abstraction from tert-butyl hydroperoxide (TBHP). IR spectral features of jet-cooled and stabilized •QOOH radicals are observed from 2950 to 7050 cm-1 at energies that lie below and above the transition state barrier leading to OH radical and cyclic ether products. The observed •QOOH features include overtone OH and CH stretch transitions, combination bands involving OH or CH stretch and a lower frequency mode, and fundamental OH and CH stretch transitions. Most features arise from a single vibrational transition with band contours well simulated at a rotational temperature of 10 K. In each case, the OH products resulting from unimolecular decay of vibrationally activated •QOOH are detected by UV laser-induced fluorescence. Assignments of observed •QOOH IR transitions are guided by anharmonic frequencies computed using second order vibrational perturbation theory, a 2 + 1 model that focuses on the coupling of the OH stretch with two low-frequency torsions, as well as recently predicted statistical •QOOH unimolecular decay rates that include heavy-atom tunneling. Most of the observed vibrational transitions of •QOOH are readily distinguished from those of the TBHP precursor. The distinctive IR transitions of •QOOH, including the strong fundamental OH stretch, provide a general means for detection of •QOOH under controlled laboratory and real-world conditions.